

Microgrid Applications in Indonesian Telcom Industries

Pekik Argo Dahono
School of Electrical Engineering and Informatics,
Institute of Technology Bandung,
INDONESIA

Background

- Indonesia has more than ten thousands small islands those are distributed around the equator.
- Indonesia has targeted to install more than 1000 MW wind power plants and 10000 MW solar power plants by 2025.
- There are more than six telcom operators in Indonesia.
- There are more than 100,00 Base Transceiver Stations (BTS) with power demands ranging from 750 W up to 10,000 W.
- One remote BTS usually consumes 2000 liters of diesel fuel every month.
- PT. Telkom (the biggest telcom operator) has a program to improve the reliability of the BTSs by using alternative energy sources those are available locally.
- It is reported that energy expense has became about 30% of OPEX.

Background

Population: 250 millions

GDP : 4000 USD

ELECTRIFICATION RATIO BY PROVINCE

Background

- Solar energy is the first choice as Indonesia is located on the equator
- It is expected that the use of wind power may reduce the system cost
- Utility line or diesel power is used as the backup.
- Several efforts to improve reliability and efficiency of telcom power system such as cyclic charging, remote feeding, fuel cells, hybrid power systems have been done.

Solar Power Map

Sumber: "World Design Insolation", Solarex

Insolation in kWh/m2/day

Wind Power Map

Wind power is available in east part of Indonesia

BTS Power Consumption

- Average total power consumption is about 4,000 Watt
- About 2,000 Watt is for air conditioning
- About 1,500 Watt for telecommunication equipment
- The rest is for lighting and monitoring

Conventional BTS

First Configuration

Second Configuration

Microgrid Example

- Location : Girisari, Bali island
- Average daily energy consumption for telecommunication is 1,5kWx24h = 36 kWh
- Average wind speed is 5-6 m/s
- Average sunshine hours is about 7-8 hrs during dry season and 5-6 hrs during rainy season
- Battery backup time is 24 hours

General Specification

➤ Photovoltaic System : Polycristaline PV, 4.8 kWp (48 pcs, @ 100Wp)

➤Battery Bank : Deep Cycle OPzV, 57.6 kWh (48 block, @ 100 Ah)

➤ Charge Controller : PWM, 48 Vdc, 120 Ampere,

➤PV Support System : Free Standing, on top shelter for 4800 Wp

➤Wind Turbine : 2500 Watt, 48 Vdc, included Charge controller

➤Wind Tower : 24 meter Self Support, steel galvanize

➤ Protection Panel : AC and DC protection system

➤ Remote monitoring : Data acquisition and communication via GPRS

Specification of Wind Power

Type : SKEA LPN-2500E

Rated Power : 2500 Watt

Rotor position : upwind

Rotor diameter : 5.0 m

Number of blades : 3

Blade material : Fiberglass-reinforced

Rotor speed : 450 rpm

Cut-in speed : 2.5 m/s

Nominal rated speed : 10 m/s

Generator type : Angular type, magnet permanent

Safety system : " ecliptic safety by turning tail vane 90° and

electric brake "

Tail length : 2800 mm

Specification of PV Module

Cell : Polycristal

No. Of Cells and connections : 36

Nominal Voltage : 12 V DC

Dimension : 1339 x 669 mm

Typical maximum power (P_{max}) : 100 Watt

Voltage at maximum power (V_{mp}) : 16.5 V

Current at maximum power (Imp) : 5.90 A

Short-circuit current (Isc) : 6.70 A

Open-circuit voltage (V_∞) : 21.8 V

Measurement Results

Measurement Results

Energy Produced by PV, Wind & Utility

Data Analysis

- The selected location has very good sunshine hours
- The average wind speed is too low but the speed varies widely
- Wind power cannot be relied for this purpose
- After one year of operation, there are almost no significant operating problems.
- One significant problem is the broken of wind turbine because of very strong wind
- The operating data will be used to adjust the design of the next projects

General Experiences

- Indonesian telcom industries have installed more than 300 microgrid power systems with various renewable resources such as solar, wind, microhydro, biodiesel, and fuel cell.
- Battery is the most expensive and unreliable component in microgrid power systems. Because of vandalism problem, sometimes we have to install battery under unfavorable conditions.
- At present, the contribution of wind energy is still very small.
- Optimizing the setting of state of charges of battery
- Investigating battery performance under tropical conditions

Telkomsel Green Powered BTS

Conclusion

- Experience has shown that PV is more promising than wind power.
- Telcom companies have targeted to reduce the electrical energy consumption by 20%.
- Telcom companies have targeted to replace
 2.5% of the BTSs into green BTSs.
- In some remote locations, the green energy is obtained by using biodiesel.

Thank You